AquaBlok & Aquagate,

Technology & Application of Amendments and Low-Permeability Materials in Remediation & Geotechnical Applications

U.S. EPA – Region 10 April 2015

Presentation Outline

- Background and Materials Technology Overview
- II. Amendments Regulatory Acceptance
- III. East Branch Grand Calumet River Project
- IV. Activated Carbon Updates
- V. Case Studies
- VI. Summary/Q & A

AquaBlok Ltd. Technology Platform

Delivery of High-Value Materials in Low Quantities

- Uniform Distribution
- Bulking Material Included / No Mixing or Separation
- Flexible/Rapid Installation (Low Cost)
- Custom Blends for Targeted Designs (Treatment)
- Can Vary/Control Permeability
- Placement through Deep Water
- Marine & Freshwater Blends

powder coating

aggregate core

AquaGate+ "composite particle"

Sequestration and/or Treatment

AquaBlok®

- Low Permeability Chemical Isolation Material
- Variable Particle Size & Densities
- High Shear Strength (Erosion Resistance)
- Proven Long-term Performance (Superfund Sites)

Aquagate PAC/Organoclay/Sorbster/Other

- Permeable (Variable)
- Powdered Treatment Amendments
 - Generally Increased Sorption Rate/Reduced Resident Time
 - Higher Surface area
 - Uniform Distribution at Low Levels
 - Targeted Placement within a Composite Cap

Low-Permeability for Sub-Aqueous Capping & Lining

Permeable Materials for In-Situ Aquagate Permeable Materials for In-Situ Treatment & Remediation Applications

Amendments & Acceptance

"The appropriate use of amendments has much potential to limit exposure to contaminants and, thus, to reduce risks."

- Less obtrusive than dredging
- Focused on reducing bioavailability
- Shorten recovery time
- Less costly and more expedient

Grand Calumet River Legacy Act Cleanup

Grand Calumet River Area of Concern

Inland Steel Manufacturing Complex, circa 1909 - Looking to Lake Michigan

Grand Calumet River Legacy Act Cleanup

Grand Calumet River Area of Concern

East Branch (Zone B) of the Grand Calumet River:

- •1.8-mile stretch of the river from Indianapolis Boulevard to Holhman Avenue
- •350,000 cubic yards of sediment are slated to be removed
- •A cap will be placed over the dredged sediment.
- •Near shore habitats will be restored with native plants
- •Completion expected in 2015.

Critical Aspects of Reactive Cap Design: Treatment Through A Permeable Treatment Layer

- <u>Uniform Distribution</u> of Treatment Material within Layer is Most Critical.
- Increased Thickness is often
 Required to Provides More
 <u>Residence Time</u> for Adsorption
 AND <u>Capacity</u>
- Larger Quantity of Treatment
 Material is Often Required to
 Protect Against Breakthrough
 from Higher Concentration
 Areas or an <u>Isolated Seep Zone</u>
- Must consider potential for long-term <u>Reduction in</u> <u>Permeability</u>
- Use of Powder Materials
 <u>Improves Rate of Sorption</u> over
 Granular Material

Reactive Cap Design

1. 6-inch mixture of sand / AquaGate+Organoclay at a ratio of 2/3 Sand 1/3 AquaGate - in thickness

2. 6-inch AquaGate+Organoclay layer

Overview of Capping Material

Aquagate, organoclayTM

REMEDIATION TECHNOLOGIES

Aggregate: Nominal AASHTO #8 (1/4-3/8") or customsized to meet project-specific need * Limestone or noncalcareous substitute, as deemed project-appropriate

Binder: Cellulosic polymer

Permeability: 1 x 10⁻² to 1 x 10⁻⁵ cm/sec

Dry Bulk Density: 65 – 85 lbs/ft³

Moisture: 10 – 20% (maximum)

ORGANOCLAY® P ORGANIC ADSORPTION MEDIA (POWDER GRADE)

Product Description:

Organoclay P is a proprietary powder adsorption media effective in removing oils, greases other non-aqueous phase liquids (NAPL) and other dissolved high molecular weight/low solubility organic contaminants.

Characteristics:

- · Hydrophobic; will not absorb water or swell when wetted
- Non-toxic to marine and benthic organisms
- High adsorption capacity of oils, greases and other NAPL
- Demonstrates noncompetitive sorption—can sorb multiple contaminants

Properties:

Property	Value	Test Method	
Particle Size 70% Min. passing 200 mesh sieve		CETCO Test Method	
Bulk Density	50-54 lbs/ft ³	CETCO Test Method	
Oil Adsorption Capacity	0.5 lb/lb Min.	CETCO Test Method	
Quaternary Amine Content	25% Min.	CETCO Test Method	

Uniform Distribution of a Small Quantity of Adsorptive Material Placed in a Single Lift

Column Test with Organoclay

Column 1
Granular Organoclay Blend

Column 2
AquaGate+Organoclay Blend

Column Test with Activated Carbon

Red circles indicate relative location of particles within the as-placed cap.
They do not denote the number of particles in a given location.

Red Circles Indicate the Location of Organoclay within the Reactive Cap Layer

J.F. Brennan – Broadcast Capping System (BCSTM)

 Able to accurately place over soft sediment with limited intermixing

 Limits resuspension of in-situ sediments

 Onboard tracking system records thickness, volume, and position of material placement

 Can accurately spread materials in very thin lifts, while achieving even distribution.

Production / Stockpile / Shipment

Manufacturing Facility: Swanton, Ohio

- Production initiated January 2014
- Due to On-Site issues Temporary Delay in Manufacturing Occurred from End of April Until June
- Material Packaged in 2,500lb Bulk Bags
- Shipments Completed in November 2014
- Production = + <u>16,600 tons</u>

Shipment / On-Site Stockpile

This Project is
Believed to be the
Largest Installation of
an Organoclay-Based
Active Cap for
Contaminated
Sediment Remediation

- Deliveries in 2,500lb Bulk Bags
- Approximately 4-5
 Trucks/Day at 22 tons
- Stockpile protected During Storage
- Placement Began in August – Completed November

Manufacturing & On-Site QA/QC

- As-Manufactured Bulk Density
- As-Manufactured Moisture Content
- As-Manufactured Coating Content

	В-Сар			
Bucket Number	ID#	Fines %	Ave. Fines	lb/cu ft
		12.79%		
1	092514465	15.87%	14.38%	14.04
		14.48%		
		6.37%		
2	092614474	4.91%	5.36%	5.23
		4.79%		
		6.38%		
3	092914549	7.34%	8.82%	8.61
		12.75%		
		8.66%		
4	092914557	7.67%	8.89%	8.68
		10.34%		
Average Fines		9.3	6%	
Target lb/cu ft		7.0	- 7.2	
A	Actual lb/cu ft		9.	14

Actual ID/ cu Tt	3.14

A-Cap				
Bucket Number	ID#	Fines %	Ave. Fines	lb/cu ft
5	100214689	27.49%	31.08%	25.64
		26.12%		
		25.78%		
6	100814783	36.48%	31.15%	25.70
		31.18%		
7	110614534	28.10%		23.19
8	111114665	28.03%		23.13
9	9 111814798 26.78%		22.09	
Average Fines			29.0	03%
Target lb/cu ft			21	.45
A	Actual lb/cu ft			.95

- Core Samples and Buckets to Confirm Placement Thickness
- As-Placed Coating Content
- Post-Placement Adsorption Testing Confirmed As-Placed Treatment Capacity

Overview of Technology & Application of Activated Carbon (AC) Based Approaches for Remediation of Contaminated Sediments

- Basic Approaches to Use & Application
- Forms & Physical Characteristics of Materials
- Performance Considerations Powder vs. Granular
- Toxicity & Ecological Considerations
- Issues and Considerations for Placement
- AquaGate+PAC Case Study

Primary Forms & Physical Characteristics of Activated Carbon

Granular

Typical Size: 20x80 mesh (0.42-0.84mm)

<u>Powder</u>

Typical Size: 200-325 mesh (0.074-0.044mm)

Activated Carbon – Bulk Density

20lb/cu.ft

0.32g/cm³

AquaGate+PACTM

Typical Size: 3/8" Minus (9.5 mm)

Sedimite[™]

Typical Size: 1/4" Minus Diam. Length Varies (6.7 mm diam.)

Bulk Densities -

75-80lb/cu.ft

45lb/cu.ft.

Performance Considerations: Powder vs. Granular Forms of Activated Carbon

Evaluation of Powdered vs Granular Forms of Amendments for In Situ Sequestration of Sediment Contamination

Matt Vanderkooy, Tom Krug – Geosyntec Consultants John Hull, John Collins – AquaBlok, Ltd.
Jeff Roberts – SiREM Laboratories

Activated Carbon Testing: Granular vs. Powder Forms

- TOC \rightarrow 6,900 mg/kg \rightarrow f_{oc} = 0.0069
- Total PCBs in Sediment → 12,000 µg/kg
 - Aroclor 1248 11,000 µg/kg
 - Aroclor 1260 1,700 μg/kg
- Total PCBs in Water
 - All Aroclor 1242

Note: 862 g dry sediment per 2-L jar

Treatment	Control	GAC	
Dose GAC (%)		5%	15%
Mass GAC (g)	-	43.1	129.4

Time	Contact Time - 1 week		
Median PCB Concentration (μg/L)			
	0.27	0.23	0.18

Time	Contact Time - 3 weeks		
Median PCB Concentration (μg/L)			
	0.31	0.21	0.16

Time	Contact Time - 10 weeks		
Median PCB Concentration (μg/L)			
	0.27	0.22	0.16

Mass PAC (g)		43.1	129.4
Dose PAC (%)	-	5%	15%
Treatment	Control	PAC	

Time	Contact Time - 1 week		
Median PCB Concentration (µg/L)			
	0.27	<0.05	<0.05

Time	Contact Time - 3 weeks		
Median PCB Concentration (μg/L)			-
	0.31	<0.05	<0.05

Time	Contact Time - 10 weeks		
Median PCB Concentration (µg/L)			
(1-6)	0.27	<0.05	<0.05

Mass GAC (g)	-	43.1	129.4
Dose GAC (%)	1	5%	15%
Treatment	Control	GAC	

Mass PAC (g)		43.1	129.4
Dose PAC (%)		5%	15%
Treatment	Control	PAC	

Time	Contact Time - 1 week
------	-----------------------

Time	Contact Time - 1 week
	contact finic 1 week

Activated Carbon & PCBs

- PAC faster sorption rate than GAC
- PAC reduced concentrations to detection limits
- GAC, no additional removal over 10 weeks
- On scale of years relative performance not measured

Toxicity & Ecological Effects of Activated Carbon in Sediments

Feb 14, 2012

LDW Carbon Workshop

Hunters Point Pilot Study Experiences (II) : **Ecological Effect**

YeoMyoung Cho, Elisabeth M.-L. Janssen, and Richard G. Luthy Dept. of Civil and Environmental Engineering Stanford University Use of Activated Carbon Amendment as an In-situ Sediment Remedy at the Lower Duwamish Waterway EPA Region 10 Sponsored Technical workshop 14-15 Feb 2012, Seattle, WA

Ecological Effects Considerations

Marc S. Greenberg, Ph.D.

U.S. EPA – Office Of Superfund Remediation And Technology Innovation
Environmental Response Team
2890 Woodbridge Ave.
Edison, NJ 08837
732-452-6413

greenberg.marc@epa.gov

Evaluating the potential for adverse effects of activated carbon on aquatic and marine animals

Prepared for LDW Carbon Workshop February 2012

Charles A. Menzie, Ph.D. camenzie@exponent.com

General Conclusions:

- Following carbon addition, benthic community returned quickly and was similar to baseline structure and function
- It has been demonstrated that less than a 5% dose of carbon in the BAZ will have little or minimal adverse impact.

Issues & Considerations for Placement / Installation

Key Issues:

- Bubbles in the pores of granular material increase buoyancy, decrease settling rate in the water column: <u>Granular AC particles are likely to drift</u> <u>with the current, missing delivery</u> <u>area.</u>
- Mixtures of GAC with other materials are likely to segregate, <u>causing GAC</u> <u>to settle on top of other materials</u>.
 Can be overcome by placing many thin lifts and over-placement of GAC.
- If successfully placed, AC still <u>susceptible to currents, propwash and</u> wave action which would result in
- <u>re-suspension and subsequent</u> drift/loss of treatment material.

Engineering Considerations for Activated Carbon Placement and Stability

Jeff Melton AECOM – Chelmsford, MA

February 14th, 2012

A=COM

Different treatment areas due to different factors:

- Natural (floods, currents, waves, plants and animals)
- Vessel Traffic (large ships, tugs, pleasure craft)
- Structural (pipe lines, electric lines, piers, foundations)
- Human Use (fishing, clamming, bird watching, recreation)

Installing an Activated Carbon Sediment Amendment at the Puget Sound Naval Shipyard & Intermediate Maintenance Facility,

Results

Battelle Eighth
International Conference
on Remediation and
Management of
Contaminated Sediments

Jason Conder¹ Melissa Grover² Gunther Rosen³ Victoria Kirtay³ D. Bart Chadwick³ Victor Magar⁴

- 1 ENVIRON International Corporation, Irvine, CA*
- ² ENVIRON International Corporation, San Diego, CA
- 3 SPAWAR Systems Center Pacific, San Diego, CA
- 4 ENVIRON International Corporation, Chicago, IL
- * Current affiliation: Geosyntec Consultants, Huntington Beach, CA

AquaGate + PACTM Amendment

- Targeted 5-cm (2-inch) amendment layer
- Increase in Total Organic Carbon observed in top 10 to 15 cm (measured via analysis of core samples)
 - Baseline = 4%, After amendment = 8%

Concentrations of PCBs in Sediment Porewater

SPME fiber

- Total PCBs decreased by 90% and 77% in 10- and 22-month monitoring events, respectively
- Significant decrease in all homologs except
 - Hexachlorinated biphenyls

Asterisk denotes significant difference from baseline to 10-month or 22-month monitoring events (95% CI)

Concentrations of PCBs in Polychaete Tissue

Nephtys caecoides

- Total PCBs decreased by 87% and 88% in 10- and 22-month monitoring events, respectively
- Significant decrease in all homologs except
 - Trichlorinated biphenyls
 - Hexachlorinated biphenyls in 22-month monitoring event

Conclusions

 Activated carbon amendment resulted in a significant reduction in available total PCBs

On-Site Production and Operations

Full-Scale Remote Manufacturing Performed at Multiple Locations

Manufacturing & Project Experience

Aquagatepac

Projects Completed or Scheduled:

United States:

- Aberdeen, MD Proving Grounds Pilot
- Bremerton, WA Navy Shipyard Pilot
- Norfolk, VA (Little Creek) Full Scale
- Pearl Harbor, HI (Sub Base) Pilot
- Passaic River (RM10.9) Full Scale
- * Hunters Point, CA (Navy) Pilot
- * Menomonee River, WI Full Scale
- * Columbia River, OR Pilot

International:

- Sandefjord Harbor, Norway Pilot
- Bergen Harbor, Norway Pilot
- Leirvik Sveis Shipyard, Norway Full Scale
- Naudoddan, Farsund, Norway Full Scale

Tons of Material:

United States: 4,402 Tons International: 1,500 MT

Note: Total Production of all AquaGate Products Exceeds 25,000 tons, including the above

^{*} Scheduled for 2015/2016

AC Sediment Cleanup Remedy Costs

 AC placement throughout a 10-acre site to achieve a 4% AC dose after bioturbation into top 4 inches

Component	Low-Range Unit Cost	High-Range Unit Cost
Activated Carbon	\$20,000/acre	\$40,000/acre
Mixing in Binding Agenta	\$0/acre	\$30,000/acre
Mixing in Sediment or Sanda	\$0/acre	\$40,000/acre
Field Placement	\$30,000/acre	\$70,000/acre
Long-Term Monitoring	\$10,000/acre	\$50,000/acre ^b
Total	\$60,000/acre	\$200,000/acre

Notes:

a Mixing in a binding agent or sediment/sand (typically not both) may be required in some applications depending on site-specific conditions and project designs.

^b High-end monitoring cost of \$50,000/acre reflects prior pilot projects and likely overestimates costs for full-scale remedy implementation.

Case Studies

Examples of AquaBlok and AquaGate Applications at Contamination Sites

NSTAR – New Bedford Harbor, MA

Project Status: Completed October 2011

- Setting/Purpose: MPG Site Slip. Low permeability encapsulation of residual contaminants in sediments following excavation - provide seal against bulkhead.
- Contaminant(s) of Concern:
 Coal Tar associated with historic
 MGP site.
- AquaBlok Cap Design/Site Area: Multi-layer comprising a sand consolidation layer followed by a six inch layer of AquaBlok 3070SW#8 saltwater formulation AquaBlok. A graded aggregate for armoring protection was placed over the AquaBlok.
- Method of AquaBlok Placement: Barge-based excavator

www.aguablokinfo.com

Site Location: British Columbia, Canada

Fraser River, Burnaby B.C. (Near Vancouver)

- Setting/Purpose: Encapsulation of contaminated sediments, within the context of a wetland restoration project.
- Contaminant(s) of Concern: Organic (DNAPL Creosote-related)
- AquaBlok Cap Design/Site Area: One meter-thick gas vent layer with vent piping secured to the sheet pile walls. AquaBlok ~12-15 inches, followed by sand/gravel bedding layer of 12 inches.

Method of Placement: Crane with Concrete Bucket

Saltwater Trench Cap/Dam, Shoreline, Washington

Project Status: Completed November 2008

Trench Seal and Cap of Pipeline to Isolate From Contaminated Soil

- **Setting/Purpose:** Full strength saltwater application - prevent establishment of preferential pathways.
- **Contaminant(s) of Concern:** PAHs, Refinery Property
- **AquaBlok Cap Design/Site Area:** Pipe of 7' in diameter capped and trench dams placed at two locations along length of pipeline

Method of AquaBlok **Placement:**

Stone Slinger/Conveyor.

Confidential Site - New York State MGP

Project Status: Completed February 2008

Horizontal Funnel & Gate with AquaGate+ORGANOCLAY To Isolate & Adsorb Coal Tar

- Setting/Purpose: Canal/River (freshwater). MGP Site – Prevent Sheens. Site area was approximately 4,000 square feet.
- Contaminant(s) of Concern: Coal Tar associated with historic MGP site.
- AquaBlok Cap Design/Site Area: Funnel & Gate layer design comprised of a one inch basal layer AquaBlok+ORGANOCLAY covered with a 6" hydrated layer of AquaBlok. The cap was then armored with a twoinch layer of AASHTO #2 stone.
- Method of AquaBlok Placement: Shore-based excavator

Placement of stone armor over AquaBlok low permeability capping material

Completed Cap with Armor and rip rap on slope

Confidential Site – New York State, Con't.

Below and Below Left: View of Organoclay Being Applied & Close up View in Place

Confidential Site – New York State (Cont'd)

No Localized Breakthrough

Relatively Long Residence Time Funneling of Contaminant bearing sediment pore waters are directed beneath a low-permeability cap through a higher-permeability treatment layer that is below the cap

Higher-Permeability Treatment Zone (Gate – includes organoclay or other materials)

Site Location: *U.S. EPA Region 5*Ohio DOT Project, Toledo, Ohio

Project Status: Completed September 2012

- Setting/Purpose: Highway construction resulted in a release (seep) of arsenic bearing water.. Objective is to direct seep to adsorptive treatment materials in to limit the potential migration of residual to a nearby river.
- Contaminant(s) of Concern: Arsenic from historic accumulation of fill material.
- AquaBlok Design / Site Area: The approach utilizes a "funnel & gate" treatment design with AquaGate+EHC-M reactive, treatment materials to address a seep zone. A low-permeability AquaBlok layer directs the residual seep downward to the base of the slope through the permeable treatment zone. (EHC®-M is a proprietary treatment material pupplied by FMC Environmental)

Use of AquaGate+EHC-M for Treatment of Arsenic Seep Zone

RCRA Metals	<u>Before</u>	June13'	Aug13'	March14'
Arsenic	60 mg/L	ND mg/L	ND mg/L	ND mg/L
Barium	0.15 mg/L	0.12 mg/L	ND mg/L	0.1mg/L
Cadmium	0.0033 mg/L	ND mg/L	ND mg/L	ND mg/L
Chromium	0.067 mg/L	ND mg/L	ND mg/L	0.043 mg/L
Lead	0.17 mg/L	ND mg/L	ND mg/L	ND mg/L
Selenium	0.81 mg/L	ND mg/L	ND mg/L	ND mg/L
Silver	0.0034 mg/L	ND mg/L	ND mg/L	ND mg/L
Mercury	ND mg/L	ND mg/L	ND mg/L	ND mg/L

Project Status: Completed 2012

Implementation of NAPL Trapping Cap* for Control of Ebullition

* NAPL Trapping Cap was designed by RMT/TRC

International Installations/Activity

Norway:

Australia:

Kirkebukten, Bergen Harbor, Norway, 2011, Caps with PAC Leirvik Sveis Shipyard, Norway, 2012, Caps with PAC

Sydney Harbor, State Property Authority (SPA), NSW

Summary – Q&A

AquaBlok as a Low-Permeability Material for Remediation & Geotechnical Applications:

Aquaqate Permeable Treatment Material for Remediation Applications:

<u>Permeable Treatment Material for Sediment Remediation Applications</u>

- Provides Uniform Delivery of Small Quantities of a High Value Treatment Material
- Use of Powder Treatment Materials = Faster Adsorption Rates
- Creates Thicker (uniform) Layers with Less Material Usage
- Ability to Mix Treatment Materials with other Granular Capping Materials and Provide Uniform Delivery in a Single Lift - Less Risk of Material Separation Wide Range of Treatment Materials
 - Rapid Installation Using Conventional Equipment
 - Proven Full-Scale Production On-Site Manufacturing